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Chapter 11

ADAPTIVE FILTERING

Chapter 7 deals with the problem of optimal filtering in its various forms.
In all of these problems there is a desired signal d[n] which is not directly
observable, and a set of observations in the form of a signal x[n] related
to d[n] (see Fig. 7.6). Since in that chapter there is an assumed known
statistical relationship between d[n] and x[n], and the statistical properties
of x[n] itself are known, it is possible to develop a filter that estimates d[n]
from the observations to minimize the mean-square error.

In many problems of interest the statistical parameters needed to develop
the optimal filter are not known or may be changing with time in an unpre-
scribed way. Consider, for example, data communication over an ordinary
switched telephone line. There is dispersion and noise introduced on the line
which prevent communication over an unconditioned line at rates higher than
a few hundred bits per second. It is not possible to design a fixed filter to
undo the distortion because the line characteristics are different every time
one dials up, and may even change during the connection period. In cases
such as this there is need for an adaptive filter.

While the adaptive filter does not require any a priori knowlege of the
signal statistics, it does assume that the desired signal is somehow more
accessible than would be implied in Fig 7.6. There are several general types
of problems however for which this is the case. The four most common types
of problems are illustrated in Fig. 11.1.

The first configuration corresponds to the system identification problem
(Fig 11.1(a)). An unknown system and an adaptive filter, which serves as a
model for that system, are provided with the same input. The output of the
unknown system, which is available directly, represents the “desired signal”

1
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(a)

(b)

Figure 11.1: Common adaptive filter configurations. (a) System identifica-
tion. (b) System equalization.
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(c)

(d)

Figure 11.1: Common adaptive filter configurations, cont’d. (c) Linear pre-
diction. (d) Noise (interference) cancellation.
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d[n] and the parameters of the adaptive filter are adjusted to minimize the
mean-square error. Note how the error ε[n] is “fed back” in the diagram,
indicating that in all forms of adaptive filters the error sequence is used in
the algorithm to adjust the parameters. The filter and its parameters after
convergence of the adaptive algorithm represent a model for the unknown
system.
The second configuration, shown in Fig. 11.1(b), represents the system or

channel equalization problem that was introduced above. Here the adaptive
filter approximates the inverse of the distortive system to mitigate its effects
on the input data. In the upper part of the figure the adaptive filter is “set
up” (initially adjusted) by sending a sequence of data (usually a pseudonoise
sequence) that is known to both the sender and receiver. Since the sequence
d[n] which is being transmitted is known at the receiver end, it can be gen-
erated without error in order to “train” the filter. Therefore, the known
data sequence is sometimes referred to as “training data.” Once the filter
has been adjusted to achieve some desired minimum error on the training
data, the system is switched into a communication mode (if the application
is data communication). The system may then operate in what is called a
“decision-directed” mode shown in the lower part of the figure. The output
of the adaptive filter is used to decode the data. For example, in a binary
communication system, it may be simply passed through a threshold device
to decide if the signal represents a one or a zero. A clean signal, based on this
decision, can then be generated, fed back, and used as the desired signal d[n]
for the adaptive filter, which continues to adapt. The system operates in this
decision-directed mode as long as not too many errors are being made. If a
large number of errors starts to appear in the system (these can be detected
for example by error-correcting codes) then the system may need to retrain
and/or reduce the transmission rate.
The third common form of adaptive filter is the linear predictor, shown

in Fig. 11.1(c). Here the desired signal is the input signal one or more steps
ahead in time. It has been seen that linear prediction is a fundamental prob-
lem in signal processing that underlies a host of important applications. Two
common uses for the linear predictor configuration in adaptive filtering are
the adaptive line enhancer (ALE) [1] and the linear predictive coder. In the
adaptive line enhancer, the input s[n] consists of a narrowband information
signal in additive broadband noise. Since the filter is better able to predict
the narrowband signal than the noise, the resulting output is an enhanced
version of the signal. In linear predictive coding, it is the error sequence
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rather than the signal itself which is transmitted. When the system has to
perform over a large class of input signals with varying statistics, an adaptive
filter can generally achieve a lower error than a fixed filter; consequently the
coding can be more efficient.
The last common configuration that will be discussed is the noise or

interference canceller shown in Fig. 11.1(d). This system has two inputs.
The first consists of a signal s[n] plus additive noise η[n]. The second is
another noise sequence ηI[n] highly correlated with the first noise sequence
but containing none (or very little) of the signal s[n]. The adaptive system
is configured to estimate the contaminating noise source η[n] from what is
called the reference noise source ηI[n] and subtract it to provide a cleaner
form of the signal s[n]. Note that in this configuration what is generically
called the “desired signal” d[n] = s[n] + η[n] is not the desired output! The
ouput is actually the error signal ε[n], which hopefully is close to the signal
s[n] after the noise is subtracted. An example of a practical system using
this configuration is the so-called “active” headphones manufactured by the
Bose Corporation and others for use in aircraft cockpits and other noisy
environments. The acoustic signal arriving at the user’s ear is the sum of
the signal from the radio or other electronic source plus the noise from the
cockpit. The headphones have ample opportunity to sample the cockpit
noise through a tiny external microphone that does not sense any of the
radio signal. This noise is processed by the adaptive filter and combined
out of phase with the radio signal in the headphones so that the total signal
arriving at the user’s ear has reduced (cancelled) noise.
This chapter focuses on FIR adaptive filters, which form the larger part

of all current practical applications. The convergence and computational
properties of these FIR filters are fairly well understood. Adaptive IIR and
even nonlinear filters are currently a field of research, but their study is well
grounded in the theory presented here. An introduction to these topics can
be found in a variety of references including [2, 3, 4, 5, 6].
The chapter begins with a review of the FIR Wiener filter, to establish

some new notation and examine its properties from the point of view provided
in optimization theory. The method of steepest descent is then applied to
this problem and its properties are examined in an idealistic setting where
the processes are wide sense stationary and all of the statistical parameters
are known. This gives motivation and insight for a first adaptive method,
the LMS algorithm, which although apparently simple, is perhaps the most
widely used method in real applications because of its low computational
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complexity. Several variations on LMS are discussed, including lattice forms
based on the same principles.
The chapter moves on to discuss adaptive least squares algorithms, which

are related to the “data-oriented” least squares methods that are the subject
of Chapter 9 in this book. As with their non-adaptive counterparts, the adap-
tive least squares methods do not rely upon any statistical ideas per se and
so form a different class of algorithms. These algorithms, in fact, achieve an
exact solution to a least squares formulation of the adaptive filtering problem,
but do so at the expense of increased computation or decreased numerical
stability. We begin with the standard Recursive Least Squares (RLS) algo-
rithm and proceed to discussion of lattice implementations and finally the
rather complicated but computationally efficient “fast” RLS algorithms.

11.1 THE WIENER FILTER REVISITED

Let us begin by reviewing the FIR Wiener filter for a stationary random
process as discussed in Chapter 7. The filter and related signals are depicted
in Fig. 11.2. The input x[n] is processed through the filter to produce an

Figure 11.2: Optimal filtering problem.

estimate d̂[n] of the desired signal d[n]. The error ε is formed as the difference
of d and d̂.
Now let the filter be described by a set of weights {wk} so that the impulse

response of the filter is given by

h[n] =

l
wn 0 ≤ n ≤ P − 1
0 otherwise

(11.1)

The filtering equation can then be written as

d̂[n] =
P−13
k=0

wkx[n− k] = wT x̃[n] (11.2)
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where w is the vector of weights defined by

w =
�
w0 w1 · · · wP−1

=T
(11.3)

and x[n] is the vector of samples of the input

x[n] =
�
x[n− P + 1] x[n− P + 2] · · · x[n]

=T
(11.4)

and the˜in (11.2) denotes the reversal of this vector.
The error sequence is defined as

ε[n] = d[n]− d̂[n] = d[n]−wT x̃[n] (11.5)

The optimal (Wiener) filter is designed to minimize the mean-square error
σ2ε = E {|ε[n]|2} and is determined by the Wiener-Hopf equation,

Rxwo = r̃dx (11.6)

[see Chapter 7] where Rx is the correlation matrix for the input process, and
rdx is the cross-correlation vector between the desired signal and the input:

Rx = E {x[n]x∗T [n]} rdx = E {d[n]x∗[n]}

The symbolwo denotes the Wiener optimal weight vector that satisfies (11.6).
The minimum mean-square error is then given by

σ2εo = Rd[0]−w∗To r̃dx (11.7)

where Rd[0] is the correlation function for d[n] evaluated at lag zero, and
where we have denoted the error produced by the optimal filter as

εo[n] = d[n]−wT

o x̃[n] (11.8)

11.2 STEEPEST DESCENT METHOD

11.2.1 Method of Steepest Descent

In this section an iterative method is developed for solving the Wiener-Hopf
equation. This will eventually lead to an algorithm for adaptive filtering.
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Begin by writing a general equation for the mean-square error for an
arbitrary set of filter weights w:

σ2ε(w) = E
+
|ε[n]|2

�
= E {(d[n]−wT x̃[n])(d[n]−wT x̃[n])∗}

Expanding and taking the expectation then reduces this to the form1

σ2ε(w) = Rd[0]−w∗T r̃dx − r̃∗Tdxw +w∗TRxw (11.9)

This error surface, plotted as a function of the weights {wk}, is a convex
downward quadratic function; that is, in two dimensions it looks like a bowl
(see Fig. 11.3). The minimum mean-square error σ2εo is unique and occurs

Figure 11.3: Error surface for the optimal filtering problem.

at the “bottom” of the surface, for which w = wo. [Note that when w = wo
the last two terms in this equation disappear due to (11.6), so that (11.9)
reduces to (11.7).] Further, there are no local minima.
Now given that w is at some arbitrary value not equal to wo, we would

like to develop an algorithm so that w can be iteratively moved closer and
eventually converge to the optimum value. Notice that when w is thus made
a function of time, the mean-square error σ2ε(w) and the error surface become
functions of time. Nevertheless, the form of the error surface at any epoch
in time is quadratic and convex downward.
The algorithm for iteratively changing the weights is known as the method

of steepest descent. The weights are moved in the direction corresponding to

1The last term of this expansion,wT R̃xw
∗ is inherently real-valued and can be replaced

by the conjugated expression w∗T R̃∗xw. Since the correlation matrix is Hermitian and
Toeplitz, R̃∗x = Rx and (11.9) follows.
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the negative gradient of the error surface. This is the steepest direction
“downhill,” and if the step size is not too large, this policy insures moving
to the optimal bottom point of the surface (although not necessarily in the
shortest time). Specifically, the weight vector is changed according to

w[n+ 1] = w[n]− µ∇w∗σ2ε (11.10)

where µ is a positive parameter representing the step size, and ∇w∗σ2ε repre-
sents the complex gradient of the error surface.2

Let us consider some explicit forms of (11.10) by evaluating the gradient.
Applying the rules summarized in Table A.2 of Appendix A to (11.9) yields

∇w∗σ2ε = −r̃dx +Rxw

[Note that setting this gradient equal to zero results in the Wiener-Hopf
equation (11.6).] If this expression is substituted in (11.10) we obtain

w[n+ 1] = w[n] + µ(r̃dx −Rxw[n]) (11.11)

This form represents a well-known algorithm for solving linear equations such
as the Wiener-Hopf equation. The equation error r̃dx−Rxw[n] is multiplied
by a constant and added to the current value of the solution w[n] to obtain
the solution w[n+1] for the next iteration. It was observed, that in our case
the error surface is quadratic, so that the solution should indeed converge if
µ is not too large. The specific details of convergence are discussed in Section
11.2.2.

2Note that if the problem involves real- rather than complex-valued signals, the algo-
rithm should be written as

w[n+ 1] = w[n]− µ
2
∇wσ2ε

where ∇wσ2ε is the real form of the gradient (see Appendix A). In this way all of the results
that are derived from this point on follow in both the real and complex cases. In fact, if
the weights wk are written as wk = wRk + wIk then (11.10) is equivalent to the pair of
equations

wRk[n+ 1] = wRk[n]− µ
2

∂σ2ε
∂wRk

wIk[n+ 1] = wIk[n]− µ
2

∂σ2ε
∂wIk

k = 0, 1, . . . , P − 1
.
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Another expression for the gradient can be obtained by writing

σ2ε(w) = E
+
|ε[n]|2

�
= E {ε[n](d[n]−wT x̃[n])∗}

The complex gradient of this expression is

∇w∗σ2ε = −E {ε[n]x̃∗[n]}
[Note that setting this form of the gradient to zero yields the orthogonality
principle.] Appplying this result to (11.10) produces an alternative equation

w[n+ 1] = w[n] + µE {ε[n]x̃∗[n]} (11.12)

It will be seen that this is the more useful form for developing an adaptive
filtering algorithm. The reason is obvious. In an adaptive filtering application
the statisitical parameters Rx and r̃dx in (11.11) are not known. (Otherwise
the filter would not need to be adaptive.) The input x̃[n] and the error ε[n]
in (11.12) however, are assumed to be available.

11.2.2 Performance Analysis

For study of performance of the steepest descent algorithm it is best to work
with the form (11.11). While Rx and r̃dx may not be known, they clearly
exist, and the performance is best understood in terms of these statistics. In
particular, it will be seen that the covergence properties of the algorithm are
dependent on the step size parameter µ and the eigenvalues of the correlation
matrix.

Convergence of the Filter Weights

The time dependence of the weights, starting from an initial guessw[0], is the
solution to the difference equation (11.11). Although it is not too difficult to
write the explicit solution to this difference equation and examine its stability
and convergence, it is much easier to define a residual weight vector

u[n] = w[n]−wo (11.13)

which satisfies a simpler difference equation. Convergence of the residual
weight vector to 0 is then equivalent to covergence of w to the optimum
Wiener solution wo.
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Solving (11.13) for w[n] and substituting this into (11.11) yields

u[n+ 1] +wo = u[n] +wo + µ[̃rdx −Rx(u[n] +wo)]
Then canceling the common terms and using (11.6) to simplify, produces the
result

u[n+ 1] = (I− µRx)u[n] (11.14)

which has the general solution

u[n] = (I− µRx)nu[0] (11.15)

In order for the solution to converge to 0, therefore the matrix (I − µRx)n
must approach zero as n approaches infinity.
The conditions for this convergence can be obtained by first writing the

correlation matrix in terms of its eigenvalues and eigenvectors:

Rx = EΛE∗T

=

 | | |
e1 e2 · · · eP
| | |



λ1 0

λ2
. . .

0 λP



−− e∗T1 −−
−− e∗T2 −−

...
−− e∗TP −−

(11.16)
where the columns of E are the eigenvectors ei and λi are the eigenvalues.
Then the matrix (I− µRx) can be written as

(I− µRx) = E(I− µΛ)E∗T

where this follows from the equation above, and the fact that E is a unitary
matrix, i.e., EE∗T = E∗TE = I. Now by a repeated application of this
formula while invoking the unitary property of E, it is easy to show that

(I− µRx)n = E(I− µΛ)nE∗T

and thus (from (11.15))that

u[n] = E(I− µΛ)nE∗Tu[0] (11.17)

where (I− µΛ)n is of the form
(1− µλ1)n 0

(1− µλ2)n
. . .

0 (1− µλP )n


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From (11.17) it is clear that u[n] will converge to 0 and w[n] will corre-
spondingly converge to wo if and only if the elements of this diagonal matrix
converge to zero as n approaches infinity. This will happen if and only if

|1− µλi| < 1
for all i.
The last condition can be stated more simply as follows. First, since all of

the λi are nonnegative, µ must be > 0. Secondly, since µλi is now a positive
quantity (or possibly 0), we must have µλi < 2 to satisfy the condition. Thus
an equivalent condition for convergence, which is necessary and sufficient, is

0 < µ <
2

λmax
CONDITION FOR CONVERGENCE (11.18)

where λmax is the largest eigenvalue of Rx.

Modes of Convergence

A deeper understanding of the convergence of the weights to the Wiener
solution can be obtained if the following change of variables is made:

v[n] = E∗Tu[n] = E∗T (w[n]−wo) (11.19)

The components of v[n] represent projections of u[n] along the eigenvectors,
i.e., 

v1[n]
v2[n]
...
vP [n]

 =

−− e∗T1 −−
−− e∗T2 −−

...
−− e∗TP −−

u[n]
and so represent a rotation of the coordinate system to one aligned with the
eigenvectors of the correlation matrix. The relation between the coordinate
systems defined by the weight vector w and the residual weight vector u, and
the rotated coordinate system defined by v is illustrated in Fig. 11.4. The
ellipse represents a contour of the error surface σ2ε(w) and, as will be shown
later, the rotated coordinate system lies along the axes of this ellipse. Now
from (11.17) we have

E∗Tu[n] = (I− µΛ)nE∗Tu[0]
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Figure 11.4: Coordinate systems defined by w, u, and v.

or
v[n] = (I− µΛ)nv[0] (11.20)

where, from (11.19)
v[0] = E∗T (w[0]−wo) (11.21)

Because the matrix (I − µΛ) is diagonal, the components of v[n] are un-
coupled and are referred to as modes. The time dependence of the modes is
given by the scalar version of (11.20):

vi[n] = (1− µλi)nvi[0] i = 1, 2, . . . , P (11.22)

Now, by inverting (11.19), u[n] can be expressed in terms of the modes as

u[n] = Ev[n] =

 |e1
|

 v1[n] +
 |e2
|

 v2[n] + · · ·+
 |eP
|

 vP [n]
Therefore, since w[n] = wo + u[n],

w[n] = wo +
P3
i=1

eivi[n] = wo +
P3
i=1

eivi[0](1− µλi)n (11.23)
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The time dependence of the individual weights, which are the components of
w, is thus given by

wk[n] = wok +
P3
i=1

ekivi[0](1− µλi)n (11.24)

where wok is the k
th weight of the Wiener filter and eki is the (k, i)

th element
of the eigenvector matrix E.

Convergence Time for the Weight Vector

The covergence time of the ith mode is measured by its time constant: the
time that it takes the magnitude of the mode to decrease to 1/e (approxi-
mately 63%) of its initial value. The time constant τi of the i

th mode is thus
defined by

|1− µλi|τi = e−1

or

τi =
1

− ln |1− µλi| (11.25)

The time constant, as defined here, is a real number, which may be rounded
to an integer.
To examine the convergence of the ith mode more carefully, let us define

αi = 1− µλi
Convergence of the ith mode occurs when |αi| < 1 which requires 0 < µ <
2/λi. The three regions of µ for which the mode converges are depicted in
Fig. 11.5. For µ between 0 and 1/λi, αk is positive and the mode converges
without oscillation. This is known as the overdamped condition. For µ be-
tween 1/λi and 2/λi, αi is negative and the mode also converges but this
time with a change in sign at each time step, i.e., an oscillatory behavior.
This is known as the underdamped condition. Finally, for µ = 1/λi, αi is
equal to zero. This condition, if it could be achieved in real life, would cause
the mode to converge in a single iteration regardless of its initial value! This
is known as the critically damped condition.
It is shown in later sections of this chapter, that for the LMS algorithm —

a practical adaptive filtering algorithm derived from the method of steepest
descent — it is generally necessary to be conservative in the choice of µ.
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Figure 11.5: Regions of convergence for the kth mode.

For that reason, and because it is often not desirable to have an oscillatory
trajectory even if it is convergent, it is usually assumed that µ is chosen to
be in the overdamped region for all modes (i.e., µ < 1/λmax). In that case,
one can drop the absolute value signs in (11.25) and write

τi =
1

− ln(1− µλi)
<∼ 1

µλi
(11.26)

where the special symbol ‘
<∼ ’ is used here to mean “less than but approxi-

mately equal to” and holds for µλi U 1.
Since the time-dependent weight vector is a weighted sum of the modes

(see (11.23)), convergence of the weight vector is dependent on convergence
of all modes. Let us define the time constant τw for the weight vector as the
largest of the τi in (11.26). Then convergence time is thus determined by the
smallest eigenvalue of the correlation matrix, that is,

τw =
1

− ln(1− µλmin)
≤ 1

µλmin

Observe, however,that µ must satisfy (11.18) for convergence. If µ is written
as

µ = ρ
2

λmax

where ρ is a fixed number between 0 and 1, then combination of the last two
equations yields

τw ≤ 1

2ρ

X
λmax
λmin

~
0 < ρ < 1
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This last equation is another very important relation. It shows that time for
convergence is dependent on the eigenvalue spread or the condition number

χ
def
=

λmax
λmin

(11.27)

of the input vector correlation matrix.

Convergence of the Mean-Square Error

Convergence of the weight vector to the Wiener filter solution signifies con-
vergence of the mean-square error to its minimum value σ2εo . To examine
this convergence in detail it is best to write (11.9) in terms of the vector u
and ultimately in terms of v (see Fig. 11.4). Although this could be done by
making direct substitutions in (11.9), a much easier method is as follows.The
error corresponding to an arbitrary weight vector w can be written as

ε[n] = d[n]−wT [n]x̃[n] = d[n]− (wT

o + u
T [n])x̃[n]

= εo[n]− uT [n]x̃[n]

where εo[n] is the error for the optimal Wiener filter, defined by (11.8). Then

σ2ε = E
+
|ε[n]|2

�
= E {(εo[n]− uT x̃[n])(εo[n]− uT x̃[n])∗}

= E
+
|εo[n]|2

�
+ uTE {x̃x̃∗T}u∗

(The cross-terms disappear because of the orthogonality principle.) The
mean-square error can therefore be written as3

σ2ε = σ2εo + u
∗TRxu (11.28)

To simplify this further, (11.16 and (11.19) can be used to write

u∗TRxu = u∗TEΛE∗Tu = v∗TΛv

so that (11.28) can be written as

σ2ε = σ2εo + v
∗TΛv

= σ2εo +
P3
i=1

λi|vi|2 (11.29)
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Figure 11.6: Contours of error surface σ2ε = constant.

The contours of constant σ2ε are ellipsoids with axes proportional to 1/
√
λi

(see Fig. 11.6). So, note that unlike the contours of the Gaussian density
function, the smallest eigenvalue determines the largest dimension of the
ellipse.

The time dependence of the mean-square error can be made explicit by
substituting the expression for the modes (11.22) in (11.29), thus obtaining

σ2ε [n] = σ2εo +
P3
i=1

λi(1− µλi)2n|vi[0]|2

where the vi[0] are computed from (11.21). From this it can be seen that the
time constant for the mean-square error is upper bounded by

τmse ≤ 1

−2 ln(1− µλmin)
<∼ 1

2µλmin
(11.30)

A plot of σ2ε [n] versus n is known as the learning curve. A typical learning
curve is depicted in Fig. 11.7.

3See footnote on page 8.
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Figure 11.7: Learning curve for the Steepest Descent algorithm.

11.3 THE LMS ALGORITHM

11.3.1 A Simple Adaptive Algorithm

The steepest descent method as given by (11.11) or (11.12) is not in itself a
suitable algorithm for adaptive filtering because it involves quantities which
are not assumed to be known. A simple adaptive algorithm can be derived
from (11.12) however by ignoring the expectation operator and replacing the
expectation by the quantity itself. The resulting algorithm is known as the
Least Mean Squares (LMS) algorithm [7] and has the form

ε[n] = d[n]−wT [n]x̃[n] (a)

w[n+ 1] = w[n] + µ ε[n]x̃∗[n] (b)
LMS (11.31)

Note from the discussion preceding equation 11.11 that this is equivalent
to changing the tap weights in the direction of the negative gradient of the
instantaneous squared error, i.e.,

∇w∗ |ε(n)|2 = −ε[n]x̃∗[n]

This quantity is a random variable and is not guaranteed to lower the error
at each iteration. However when the condition (11.18) for convergence of the
steepest decent algorithm is satisfied, the LMS algorithm also converges in
a manner to be discussed shortly. Moreover, it is extremely simple to apply
and requires only O(P ) arithmetic operations per iteration. An unresolved
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issue however, is how to choose the step size parameter µ. Evidently, at
least (11.18) must be satisfied; but we do not presume to know Rx and its
eigenvalues. A practical solution is to use a more conservative bound in place
of (11.18) that can be easily estimated. Since the trace of Rx is equal to the
sum of its eigenvalues, and these eigenvalues are all nonnegative, it is clear
that

λmax ≤ tr Rx
Substituting this into (11.18) leads to the sufficient condition:

0 < µ <
2

tr Rx
=

2

mean tap input power
=

2

PRx[0]
(11.32)

This provides a starting point for selecting µ since the average power (Rx[0])
can be easily estimated from the input data. In practice, the chosen value
for µ is often in the range of 0.1 to 0.5 times the upper bound, or even less.
The trade-offs involving this are discussed in the next section.
A simple example in terms of a system identification problem is illustrated

below. Several important points discussed in this chapter are pointed out as
well as some new phenomena which will need to be further explored.

Example 11.1 An illustration of the LMS method for system identification (see
Fig. 11.1 (a)) is considered here. In this experiment the unknown system is
described by

y[n] = x[n] + 0.7x[n− 1]
A first order adaptive filter is used (P = 2), so that the weights w0 and w1 should
converge to 1.0 and 0.7 respectively. The input sequence x[n] is chosen to be a
first order process of the form

x[n] = ax[n− 1] + w[n]
where w[n] is white noise with variance σ2w = 1. The parameter a determines the
eigenvalue spread of the input process (see Prob. 11.1). Some values of a, the
corresponding eigenvalue spread χ, and the upper bound (2/λmax) on µ are given
in the table below.

a χ upper bound

0 1 2
0.25 1.667 (1.59) 1.5 (1.54)
0.5 3 (2.8) 1 (1.04)
0.75 7 (6.3) 0.5 (0.54)
0.95 39 (31) 0.1 (0.12)
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The main numbers listed are the theoretical values. The experimental values esti-
mated from the data are shown in parentheses for comparison. The first case listed
a = 0 corresponds to pure white noise and is the ideal case for rapid convergence.

Figure 11.8 shows the trajectories of the filter coefficients for different values of a.
In each case, µ was taken to be 1

10 of the upper bound for that case. Notice that
the settling time increases as a and thus the eigenvalue spread increases. In Fig.
11.8 (a) and (b) the filter coefficients have converged to the correct values (shown
by the dotted lines) within less than 15 iterations. In Fig. 11.8 (c) (χ = 7) about
100 iterations are required for convergence, while in (d) (χ = 39) the coefficients
still have not reached their final values in 500 iterations.

2

From this example and the previous discussions, it is clear that the LMS
algorithm performs best when the input is a white noise sequence. Thus
techniques that attempt to orthogonalize the input while equalizing the in-
put power may be used in some applications. Some of these techniques are
discussed later.
The experimental learning curve (i.e., squared error) for the case depicted

in Fig. 11.8(d) of the example is shown in Fig. 11.9. Note that although the
squared error is decreasing very slowly it is not nearly as low as the value
for the Wiener filter, which is approximately −285 dB.4 It turns out, that
the error will eventually fluctuate around some average steady state value,
but this value will never be quite equal to the Wiener filter error. This is
known as the “misadjustment” effect of the LMS algorithm. The reason for
it is explored in the next section.

11.3.2 Discussion of LMS Convergence

A block diagram for the LMS adaptive algorithm (11.31) is given in Fig.
11.10. The algorithm looks deceptively simple, but there is an underlying
complexity that makes the algorithm extremely difficult to analyze. This
complexity arises from a number of characteristics. First, although the
method is based on an FIR filter, the coefficients are not constant, so the
overall system in Fig. 11.10 is time-varying. Secondly, since the error is fed

4This value, although ridiculously low for any physical experiment, is really not unrea-
sonable for this simulation where there has been no observation noise added to the output
of the linear system.
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Figure 11.8: LMS system identification example. (a) a = 0.25,χ = 1.667, µ =
0.15 (b) a = 0.5,χ = 3, µ = 0.1.
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Figure 11.8: LMS system identification example, cont’d. (c) a = 0.75,χ =
7, µ = 0.05 (d) a = 0.95,χ = 39, µ = 0.01
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Figure 11.9: Learning curve for the LMS system identification example. (a =
0.95,χ = 39, µ = 0.01)

Figure 11.10: Block diagram for LMS adaptive filter.
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back and used to update the filter coefficients, the overall system is nonlinear.
This is evident if you substitute (11.5) into (11.31) to obtain

w[n+ 1] = w[n] + µ x̃∗[n](d[n]− x̃T [n]w[n]) (11.33)

Since the filter coefficients are nonlinear functions of the input, the system
output is also a nonlinear function of the input. Last, but not least, the input
x[n] is a random process. Therefore the system in Fig. 11.10 is described by
a stochastic nonlinear difference equation. The input, the gradient estimate,
and the filter coefficients are all random processes.
Aside from the complexity inherent in the system, there is the issue of

convergence for a random process. Two types of stochastic convergence will
be considered here. The first type is called convergence of the mean.5 This
type of convergence states that

lim
n→∞E {ε[n]} = ε∞ and lim

n→∞E {w[n]} = w∞

where ε∞ and w∞ are finite constant limiting values. Although this type
of convergence can be shown for LMS, it is of marginal value by itself. In
particular, although the mean value of the error and the filter coefficients may
become constant, the actual values of these variables can continue to jump
around. In fact, this jumpy behavior is exactly what the LMS algorithm
tends to produce.
The other type of convergence is called convergence in mean-square, which

states that

lim
n→∞E

+
|ε[n]|2

�
= σ2ε

where σ2ε is a finite constant. This is a stronger kind of convergence which
establishes the variance of the error as n → ∞. This type of convergence
can also be established for the LMS algorithm although a correct proof is
difficult mathematically and has only recently been known (see [8]). The
result implies however, that the jumpy behavior can be kept managable by
a proper selection of the step size parameter.
Since a formal proof of any type of convergence is difficult, most treat-

ments use a set of generally unrealistic assumptions known as “independence
theory” (see Problems 11.2 and 11.3) to avoid these difficulties. Rather than
follow along those lines here, let us proceed to examine the problem in more

5Also called convergence in mean value.
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detail and try to infer something about its limiting characteristics. Although
no actual “proofs” of convergence are provided, the arguments should be
sufficient to explain the general performance of the algorithm.
To begin, consider the vector u defined by (11.13). Since w is now a

random vector, u is also a random vector and represents the deviation of the
filter coefficients from those of the Wiener optimal filter. By substituting
(11.13) into (11.33) and rearranging, we can obtain a difference equation for
the deviation u as

u[n+ 1] = (I− µx̃∗[n]x̃T [n])u[n] + µx̃T [n]εo[n] (11.34)

where εo[n] is the Wiener filter error sequence given by (11.8). The corre-
sponding equation for the filter error sequence is obtained by substituting
(11.13) into (11.5) and using (11.8). The result is

ε[n] = εo[n]− x̃T [n]u[n] (11.35)

These last two equations can be used to infer some general characteristics
of the LMS algorithm. First, examine (11.34) and observe that this difference
equation is “driven” by the term on the right hand side involving εo[n].
Therefore unless εo[n] is zero (which it is not), or x̃[n] = 0 (unlikely), u[n]
will not approach 0 as a steady-state solution. In fact, since εo[n] is a white
noise process, u[n] will not tend to approach any constant value, but will
continue to vary randomly with time. Thus w (which equals u+wo) will not
tend to a steady-state value of wo but will continue to vary in time. Note
also that µ acts like a gain factor in (11.34). Smaller values of µ lead to
smaller variations of u[n]. This is an important fact to remember.
In spite of the somewhat erratic behavior it can be shown that E {u[n]}

converges to 0 and thus w[n] satisfies convergence of the mean to wo. This
is plausible when you consider that E {x̃T [n]εo[n]} = 0 by the Orthogonality
Principle; thus the difference equation for E {u[n]} obtained by taking the
expected value of (11.34) has no driving term.
Now turn to (11.35) and notice that since ε[n] consists of the sum of two

terms, the variance of ε[n] is more than just the variance of εo[n]. Thus the
mean-square error of the LMS algorithm will always be greater than that
of the Wiener filter. In other words, the difference, which is known as the
excess error, will always be greater than zero. It is apparent that the excess
error is also controlled by the step size parameter however, so that smaller
values of µ tend to reduce the excess error.
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In the literature on adaptive filters the excess error is usually represented
as a normalized quantity called the misadjustment, and defined by

M def
=

σ2ε − σ2εo
σ2εo

=
σ2ε
σ2εo
− 1 (11.36)

An approximate expression for the misadjustment derived using the indepen-
dence theory can be given as

M =
P3
i=1

µλi
2− µλi

(see Problem 11.3). The existence of excess error or misadjustment is an
inherent characteristic of the LMS algorithm. Increasing the value of µ tends
to increase the rate of convergence but also to increase the misadjustment,
and vice versa.

11.3.3 Related Forms

A number of algorithms related to the basic LMS algorithms are possible.
Some are intended to improve performance of the basic algorithm (at the
expense of modest increases in computation) while others, such as the sign
algorithms, aim at reducing the computation to a bare minimum. This sec-
tion cites some of the more well-known variations of LMS.

Leaky LMS

Let us return for a moment to the method of steepest descent, on which
the LMS algorithm is based. Recall that the tap weight vector is given by
the iteration formulas (11.11) and (11.12), which are summarized here for
convenience:

w[n+ 1] = w[n] + µE {ε[n]x̃∗[n]}
= w[n] + µ(r̃dx −Rxw[n])

Based on this last expression, it was found that the modes of the problem
converged according to (1 − µλi)n, where the λi are the eigenvalues of the
correlation matrix.
It is instructive to consider what happens if one or more of the eigen-

values is equal to zero. Then it is clear that the mode remains constant
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with time and does not converge. Worst yet, suppose that due to numerical
inaccuracies some of these “zero” eigenvectors are computed as very small
negative numbers. In this case, the modes actually diverge! To prevent these
undesirable results, numerical analysists have suggested a technique called
“leakage,” where the weight iteration is modified to the following expression

w[n+ 1] = (1− µα)w[n] + µ(r̃dx −Rxw[n])
= w[n] + µ (r̃dx − (Rx + αI)w[n])

with α (the leakage coefficient) being a small positive number much less than
one. Evidently, the correlation matrix has been replaced by a modified cor-
relation matrix Rx+αI that has no zero eigenvalues. Therefore convergence
is assured if µ is chosen to satisfy

0 < µ <
2

α+ λmax

The corresponding LMS algorithm takes the form

w[n+ 1] = (1− µα)w[n] + µ ε[n]x̃∗[n] (11.37)

which is known as the leaky LMS algorithm.

Unfortunately, the underlying leaky steepest descent algorithm does not
converge to the Wiener-Hopf solution, but instead to the modified solution

w = (Rx + αI)−1r̃dx

Thus the leaky LMS algorithm has an additional bias.

The leaky LMS algorithm can also be derived by minimization of the
weighted sum

|ε[n]|2 + α,w[n],2

(see Problem 11.6). Note also that the modified correlation matrix that
appears in the leaky version of the algorithm is the correlation matrix for
the input plus a small amount of white noise. Thus the same effect can be
achieved by actually adding a small amount of white noise with variance α
to the input of the LMS adaptive filter.
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Normalized LMS

Another version of the LMS algorithm, known as Normalized LMS, can be
derived based on the following considerations. At time n + 1 the weight
vector is updated by adding to it some amount δ. That is,

w[n+ 1] = w[n] + δ[n+ 1]

The time-varying step δ is chosen to satisfy the condition

wT [n+ 1]x̃[n] = d[n] (11.38)

and ,δ,2 is minimized subject to the above constraint.
Note that the constraint does not say wT [n + 1]x̃[n + 1] = d[n + 1], as

this would state that the filter is perfect! The constraint does require the
new weight to estimate the present data perfectly however, and to make the
smallest possible change to do so.
The minimization is straightforward using the techniques outlined in Ap-

pendix A and is given as a problem (see Problem 11.7). The optimal δ is
given by

δ[n+ 1] =
ε[n]x̃∗[n]

,x̃[n],2

leading to the algorithm

w[n+ 1] = w[n] +
ε[n]x̃∗[n]

,x̃[n],2
(11.39)

Let us discuss this result briefly. Equation 11.32 shows that a conservative
bound for the step size parameter µ in the LMS algorithms involves the
reciprocal of the mean tap input power PRx[0]. An intuitively reasonable
estimate for this quantity would be the instantaneous tap input power, which
is the squared norm of the input vector, i.e.,

P̂T [n] = ,x̃[n],
2 =

n3
k=n−P+1

|x[k]|2 (11.40)

This estimate is unbiased since E
+
P̂T [n]

�
= PRx[0]. With this estimate

(11.39) is equivalent to the ordinary LMS algorithm with µ taken exactly
half way between its upper and lower bounds (see (11.32)).
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The algorithm known as “Normalized LMS” modifies (11.39) in two ways.
First it introduces a a normalized step size parameter which is theoretically
in the range 0 < µI < 2 (but see below). Secondly, it adds a small positive
number 6 (not to be confused with the error sequence ε[n]) to the vector norm
,x̃[n],2. This is intended to prevent instability, should the actual norm of the
input vector become very small. The resulting Normalized LMS algorithm
is given by

w[n+ 1] = w[n] +
µI

6+ ,x̃[n],2
ε[n]x̃∗[n] (11.41)

To avoid the P additions per iteration that normally would be needed
to compute the vector norm, a sliding window computation can be used.
Equation (11.41) is then expressed as two equations:

w[n+ 1] = w[n] +
µI

P̂T [n]
ε[n]x̃∗[n] (11.42)

and

P̂T [n] = P̂T [n− 1] + |x[n]|2 − |x[n−P ]|2 (11.43)

(This last equation follows easily from (11.40).) The recursion (11.43) is ini-
tialized by setting P̂T [−1] = 6 and providing data or zeros for x[−1] . . . x[−P ].
The normalized LMS algorithm has a number of potential advantages

over the basic LMS algorithm (11.31):

1. There is no need for separate computation of an upper bound on the
step size parameter; µI is independent of the tap input power. In
practice, this parameter is usually chosen in the range 0.1 ≤ µI < 1.

2. The normalization quantity P̂T [n] is estimated directly from the input
data.

3. Because P̂T [n] is computed from the most recent data, the normaliza-
tion follows changes in the input statistics.

The last property allows the normalized step size parameter µI to remain fixed
under changing statistics and can result in better “tracking” of nonstationary
processes. On the other hand, the normalization is performed at each step
and requires a few additional arithmetic operations.
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LMS with Filtered Normalization

The estimate P̂T [n] given in (11.40) and (11.43) is a moving sum estimate of
the mean tap input power. It is also possible to use a weighted sum computed
as

P̂T [n] = βP̂T [n− 1] + P (1− β)|x[n]|2 (11.44)

where β is a weighting factor in the range 0 < β < 1. Equation 11.44 is
sometimes refered to as a filtered estimate. Using (11.42) in conjuction with
(11.44) provides an alternative form of normalization for the LMS algorithm.
Equation 11.44 uses all the data in the tap power computation, but gives

decreasing weight to earlier data. This can be seen clearly by writing the
solution to (11.44) in closed form as6

P̂T [n] = P (1− β)
n3
k=0

βk|x[n−k]|2 (11.45)

Thus |x[n]|2 has unity weight and |x[n−k]|2 has weight βk, which decreases
with k.
The weighted estimate P̂T [n] is an asymptotically unbiased estimate of the

mean tap input power. To see this, take the expectation of (11.44) to write

E
+
P̂T [n]

�
= βE

+
P̂T [n− 1]

�
+ P (1− β)E

+
|x[n]|2

�
� ,� 1
Rx[0]

If P̂T [n] approaches a limit PT as n→∞ then the last equation becomes

PT = βPT + P (1− β)Rx[0]

which has a solution PT = PRx[0]. That the limiting value does exist and
is given by PT = PRx[0] can be shown more rigorously by applying the
expectation to (11.45) (see Problem 11.8).

Sign Algorithms

In applications involving real-valued signals, where low computation makes
the difference between feasibility and infeasibility of an application, the LMS

6Equation 11.44 is simply a first order difference equation with impulse response
P (1− β)βn and (11.45) just represents the convolution of this sequence with the “input”
sequence |x[n]|2.
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algorithm can be further simplified to use only the sign of some of the terms.
A basic form of sign algorithm is known as the sign-error algorithm and has
the weight update equation

w[n+ 1] = w[n] + µ sgn {ε[n]} x̃[n] (11.46)

where the function sgn{·} is +1 if its argument is positive and −1 if the
argument is negative. This algorithm can be shown to minimize the absolute
value of the instantaneous error, i.e., |ε[n]| (see Problem 11.9); therefore it
is also called the Least Mean Absolute Value (LMAV) algorithm. Note that
since the weight update formula uses only the sign of the error, this algorithm
moves the weights in the same direction as the standard LMS algorithm, but
the magnitude of the change is different.
This approach can be taken one step further by using just the sign of each

component of the observation vector as well as the sign of the error. The
resulting sign-sign algorithm thus takes the form

w[n+ 1] = w[n] + µ sgn {ε[n]} sgn {x̃[n]} (11.47)

The price paid for the simplicity of the sign algorithms is generally slower
convergence and a greater tendency toward instability than the standard
LMS algorithm. Stability can be improved, as in the standard LMS by
adding a leakage term, that is, multiplying the term w[n] on the right side
of (11.46) or (11.47) by (1− µα) where α is the leakage coefficient.

Quasi-Newton Methods

The LMS method is derived from the steepest descent technique in numer-
ical analysis and optimization, which uses only first derivatives of the error
surface. A well established way to accelerate convergence, is to use both
the gradient and the Hessian (matrix of second derivatives) of the error sur-
face in the iteration. The basic technique for this procedure is called the
Gauss-Newton method. In the application of this method to the FIR filtering
problem, the Hessian turns out to be the inverse of the input autocorrelation
matrix, and the corresponding stochastic iteration takes the form

w[n+ 1] = w[n] + µ ε[n]R−1x x̃
∗[n]

This equation seems to defeat the purpose of an adaptive iterative algorithm
since it requires inversion of the correlation matrix, which is equivalent to
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solving the Wiener-Hopf equation. However, if the true inverse can be re-
placed by an approximation R̂−1x , which is either fixed or low in computa-
tional complexity, the above algorithm becomes viable. Such algorithms have
been called quasi-Newton algorithms [6].

The quasi-Newton algorithm can be interpreted in a number of ways. In-
tuitively the scalar step-size parameter µ in the LMS algorithm is replaced by
a scaled matrix µR̂−1x which allows more degrees of freedom. In addition, the
incorporation of that matrix can be interpreted as a whitening transformation
applied to the input. Our study of convergence for the steepest descent and
LMS algorithms showed that a white input process is the optimum situation.

A number of approximations are possible. Marshall and Jenkins [9] have
developed an approach called Fast Quasi-Newton which has computational
requirements of O(P 2). Also, the well-known Recursive Least Squares (RLS)
algorithm (described later) is essentially of this form and has similar compu-
tational requirements, although it is not derived as a stochastic optimization
problem. Finally fixed matrices with just a few parameters, such as a diago-
nal or tri-diagonal matrix or matrices derived from an approximate whitening
transformation such as the discrete cosine transform can all be applied to de-
velop a method. Computational requirements will typically vary from O(P )
to O(P 2).

11.4 LMS FOR LATTICES

The ability to represent a prediction error filter in a lattice form suggests
that it may be possible to form an adaptive algorithm for linear prediction
using the lattice realization. Further, the ability to formulate FIR Wiener
filters in a lattice form (See Chapter 8, Section 8.12) suggests that perhaps
all FIR adaptive filters may be implemented in lattice form.

This section begins by considering the adaptive linear prediction problem,
with a filter implemented in lattice form. Once the appropriate form of the
algorithms is developed, we move on to consider the so-called “joint process
estimation” problem and the adaptive lattice structure that can be applied
to all FIR filters.
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11.4.1 Adaptive Linear Prediction

The LMS method for lattice filters is known as the Gradient Adaptive Lattice
(GAL) algorithm developed by Griffith [10, 11]. The algorithm is slightly
more complex than the basic LMS algorithm, as it involves a dual recursion:
a recursion in filter order as well as a recursion in time. You may notice
that its development bears some similarity to that of the Burg algorithm
described in Chapter 9.
We begin by considering a lattice prediction error filter of order P and

assume that the reflection coefficients up to order p−1 have been determined.
The reflection coefficient γp can be found by minimizing the mean sum of
squared forward and backward prediction errors, denoted by

Jp = E
+
|εp[n]|2 + |εbp[n]|2

�
(11.48)

Let us first show that minimization of this quantity with respect to γp
determines the correct value for the reflection coefficient in a standard non-
adaptive linear prediction problem. The forward and backward prediction
errors satisfy the following recursion (derived in Chapter 8)

εp[n] = εp−1[n]− γ∗pε
b
p−1[n− 1] (a)

εbp[n] = εbp−1[n− 1]− γpεp−1[n] (b)
(11.49)

Substituting (11.49) into (11.48) results in

Jp = E
+�
εp−1[n]− γ∗pε

b
p−1[n− 1]

= �
ε∗p−1[n]− γpε

b∗
p−1[n− 1]

=
+
�
εbp−1[n− 1]− γpεp−1[n]

= �
εb∗p−1[n− 1]− γ∗pε

∗
p−1[n]

=�
and taking the complex gradient produces

�γ∗pJp = −E
+
εbp−1[n− 1]

�
ε∗p−1[n]− γpε

b∗
p−1[n− 1]

=
+
�
εbp−1[n− 1]− γpεp−1[n]

=
ε∗p−1[n]

�
(11.50)

The optimal reflection coefficient is then found by setting (11.50) to zero,
which yields

γp =
E
+
εbp−1[n− 1]ε∗p−1[n]

�
1
2

�
E {|εp−1[n− 1]|2}+ E

+
|εbp−1[n− 1]|2

�=
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Since the expected value of the forward and backward squared errors is the
same, this last result can be written as

γp =
E
+
εbp−1[n− 1]ε∗p−1[n]

�
E
+
|εbp−1[n− 1]|2

�
which is the same expression derived in Chapter 8, Section 8.7. We conclude,
therefore, that the proposed procedure of minimizing (11.48) with respect to
the reflection coefficient, and doing this for all orders one at a time, is an
optimal procedure for deriving the prediction error filter. The minimum value
of Jm also has a simple recursive expression, which is explored in Problem
11.10.
Now consider an adaptive solution for the reflection coefficients. First

notice that by substituting (11.49) into (11.50) the complex gradient can be
written in the much simpler form

�γ∗pJp = −E
+
εbp−1[n− 1]ε∗p[n] + εbp[n]ε

∗
p−1[n]

�
(11.51)

A steepest descent algorithm can thus be proposed to find the reflection co-
efficient γp that minimizes Jp. This algorithm has the form

γp[n+ 1] = γp[n]− µ�γ∗p Jp

= γp[n] + µE
+
εbp−1[n− 1]ε∗p[n] + εbp[n]ε

∗
p−1[n]

�
Notice that since Jp is a quadratic function of γp, this algorithm will converge
for sufficiently small values of the step size parameter µ. Furthermore, we can
define an LMS-type algorithm by dropping the expectation and taking our
step in the direction of the instantaneous gradient. The resulting Gradient
Adaptive Lattice (GAL) algorithm uses a time-varying step size parameter
analogous to that in the normalized LMS algorithm (11.42) and is given by

γp[n+ 1] = γp[n] +
µI

Ep−1[n]
�
εbp−1[n− 1]ε∗p[n] + εbp[n]ε

∗
p−1[n]

=
(11.52)

where µI is a constant and Ep is a filtered estimate of the total (forward plus
backward) error variance satisfying

Ep[n] = βEp[n− 1] + (1− β)
�
|εp[n]|2 + |εbp[n− 1]|2

=
(11.53)
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(0 < β < 1). As we have seen before, this type of filtered estimate is
asymptotically unbiased. The step size parameter µI is theoretically confined
to satisfy 0 < µI < 2 but is usually taken as µI < 0.1. The complete algorithm
is obtained by applying (11.49), (11.53) and (11.52) and is summarized below:

GAL Algorithm

1. (Initialization) For p = 1, 2, . . . , P set εp[−1] = εbp[−1] = 0, γp[0] = 0,
and Ep[−1] = 6 (a small number), for p = 0, 1, 2, . . . , P .

2. For n = 0, 1, 2, . . .

(a) Set ε0[n] = εb0[n] = x[n].

Compute E0[n] = βE0[n− 1] + (1− β)
�
|ε0[n]|2 + |εb0[n− 1]|2

=
(b) For p = 1, 2, . . . , P compute

εp[n] = εp−1[n]− γ∗p [n] ε
b
p−1[n− 1]

εbp[n] = εbp−1[n− 1]− γp[n] εp−1[n]

Ep[n] = βEp[n− 1] + (1− β)
�
|εp[n]|2 + |εbp[n− 1]|2

=
γp[n+ 1] = γp[n] +

µI

Ep−1[n]
�
εbp−1[n− 1]ε∗p[n] + εbp[n]ε

∗
p−1[n]

=

A section of MATLAB code to implement the algorithm is given below.
Because of the dual recursion (order as well as time) the implementation
in MATLAB cannot easily take advantage of array operations and thus is
not particularly efficient. The algorithm itself is computationally efficient,
however and this efficiency can be realized when coding in languages closer
to the machine level.
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MAIN PART OF FUNCTION
(GAL algorithm):

ef(:,1)=x; eb(:,1)=x; % initialization

x2=x.*conj(x);

for n=2:L+1

Efb(n,1)=beta*Efb(n-1,1) + beta1*(x2(n) + x2(n-1));

for p=2:P+1

ef(n,p)=ef(n,p-1)-conj(Gm(n,p))*eb(n-1,p-1);

eb(n,p)=eb(n-1,p-1)-Gm(n,p)*ef(n,p-1);

Efb(n,p)=beta*Efb(n-1,p) ...

+ beta1*(ef(n,p)*conj(ef(n,p)) + eb(n-1,p)*conj(eb(n-1,p)));

Gm(n+1,p)=Gm(n,p) + (mu1/Efb(n,p-1))...

*(eb(n-1,p-1)*conj(ef(n,p)) + eb(n,p)*conj(ef(n,p-1)));

end

end

11.4.2 Joint Process Estimation

It was shown in Chapter 8, Section 8.12 that the Wiener filter for a general
estimation problem could be implemented in lattice form, using the basic
linear prediction lattice structure as the backbone. The structure of the
filter is referred to as a lattice-ladder structure (see Fig. 11.11) and this
formulation, commonly referred to as “joint process estimation,” is especially
useful for an adaptive filter. Note that for an FIR Wiener filter of order P
we need a lattice only of order P − 1. The vector x̃[n] of P observations is
replaced by the vector of backward prediction errors

ε̃b[n] =


εb0[n]
εb1[n]
...
εbP−1[n]

 (11.54)
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Figure 11.11: Lattice-ladder structure used in joint process estimation.

The vector w of coefficients wp for p = 0, 1, . . . , P−1 can then be updated
adaptively through the LMS algorithm:

w[n+ 1] = w[n] + µε∗[n]ε̃b[n]

where ε[n] = d[n] − d̂[n]. Note that in this form of the algorithm the last
term on the right hand side of the equation is conjugated with respect to
the corresponding term in (11.31). This is because the weights in the joint
process implementation are defined conjugated (see Fig. 11.11).
Since the input sequence is transformed to a set of orthogonal random

variables, convergence will be rapid provided that these variables are properly
normalized.7 A normalized algorithm for the individual weights can thus be
specified as

wp[n+ 1] = wp[n] +
µI

σ2p
ε[n]εb∗p [n] p = 0, 1, . . . , P − 1

To obtain a completely adaptive algorithm for the joint process config-
uration, the reflection coefficients of the lattice and the weights wp can be
adapted simultaneously. In this case, the prediction error variances in the
last equation are unknown and have to be estimated. A reasonable estimate
however is one half of the filtered sum of prediction errors Ep[n]/2. Thus the
LMS update equation for the weights becomes

7Note that the corrrelation matrix for the vector of backward prediction errors (11.54)
is diagonal with elements σ2p. Thus the eigenvalue spread is the ratio of prediction error
variances σ20/σ

2
P , which can be quite large.
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wp[n+ 1] = wp[n] +
2µI

Ep[n] ε[n]ε
b∗
p [n] p = 0, 1, . . . , P − 1 (11.55)

where

ε[n] = d[n]− d̂[n] = d[n]−
P−13
p=0

w∗p[n]ε
b
p[n] (11.56)

In programming, these two equations are added in step 2 of the GAL algo-
rithm. We refer to this joint process algorithm as the Gradient Adaptive
Lattice-Ladder (GAL2) algorithm. A portion of the MATLAB code for the
GAL2 algorithm is given below. Note how the additional steps are added at
the end of the outer loop.

MAIN PART OF FUNCTION
(GAL2 Algorithm):

ef(:,1)=x; eb(:,1)=x; % initialization

x2=x.*conj(x);

for n=2:L+1

Efb(n,1)=beta*Efb(n-1,1) + beta1*(x2(n) + x2(n-1));

for p=2:P

ef(n,p)=ef(n,p-1)-conj(Gm(n,p))*eb(n-1,p-1);

eb(n,p)=eb(n-1,p-1)-Gm(n,p)*ef(n,p-1);

Efb(n,p)=beta*Efb(n-1,p) ...

+ beta1*(ef(n,p)*conj(ef(n,p)) + eb(n-1,p)*conj(eb(n-1,p)));

Gm(n+1,p)=Gm(n,p) + (mu1/Efb(n,p-1))...

*(eb(n-1,p-1)*conj(ef(n,p)) + eb(n,p)*conj(ef(n,p-1)));

end

err(n) = d(n) - eb(n,:)*W(n,:)’;

W(:,n+1) = W(:,n) + 2*mu1*err(n)*eb(:,n)’./Efb(:,n));

end;
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11.5 THE RLS ALGORITHM

In Chapter 9 we introduced the methods of least squares. Recall that the
methods based on least squares principles are data oriented, i.e., the measures
of performance are based on errors computed from whatever data is at hand.
There is no mention of expectation or ensemble averages. The Recursive
Least Squares (RLS) method is an adaptive method based on least squares.
As such, it is fundamentally different from the adaptive methods presented
thus far in this chapter. From a practical viewpoint, it provides another
alternative for dealing with adaptive filtering problems. It will be seen that
among other things, this method provides for faster convergence at the price
of higher computation. (The basic method requires O(P 2) operations rather
than O(P ).) The filtering equations are more extensive however, and can be
compared to those of the Kalman filter.

This section reviews the problem of least squares and develops the basic
RLS algorithm. Subsequent sections in this chapter discuss a lattice oriented
version of the algorithm and even a “fast” RLS algorithm that requires only
O(P ) computations.

[Note: Since this discussion makes frequent references to Chapter 9 of the
text, you will want to have a copy of that chapter in front of you.]

11.5.1 Weighted Least Squares

Recall the general filtering problem illustrated in Fig. 9.4 on page 520 of
the text. A desired data sequence denoted by d[n] is to be estimated from a
related observed data sequence x[n] by a linear FIR filter. In keeping with
the common notation for adaptive filtering, let us denote the filter weights
by w0, . . . , wP and define the weight vector w as in (11.3). The optimal
filter that minimizes the sum of squared errors over the obsevation interval
nI ≤ n ≤ nF is then given by the solution to the least squares Wiener-Hopf
equation

(X∗TX)w = X∗Td

whereX is the data matrix given by (9.45) and d =
�
d[nI ] d[nI + 1] · · · d[nF ]

=T
is the vector of desired data given in the problem. This equation can be solved
by any number of methods discussed in Chapter 9.
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In preparation for the adaptive least squares problem, let us consider a
generalization of the previous least squares problem and the criterion (9.42).
In particular, let the error 6[n] be defined as in (9.41) and define the weighted
sum of squared errors as

Sβ[n] def=
n3

i=nI

βn−i|6[i]|2 ; 0 < β < 1 (11.57)

Here the final time nF has been replaced by a general time n (n ≥ nI) and
the weighted sum has been defined to show its explicit dependence on n.
Since β is a positive number less than 1, this sum gives the highest weight to
the error at the current time n and exponentially less weight to errors as they
go back in time. As a result, β is sometimes referred to as an exponential
weighting factor or a “forgetting factor.” The filter weight vector w[n] to
minimize this weighted sum of errors (11.57) can be found as follows.
Let X[n], d[n] and d̂n all denote the corresponding variables at a general

time nF = n. In particular

X[n] =



x[nI ] x[nI − 1] · · · x[nI − P + 1]
x[nI + 1] x[nI ] · · · x[nI − P + 2]
...

...
...

...
...

...
x[n] x[n− 1] · · · x[n− P + 1]


(11.58)

and

d[n] =



d[nI ]
d[nI + 1]
...

...
d[n]


(11.59)

Following the approach of Chapter 9, define the error vector at time n as

6[n] = d[n]− d̂[n]
where the estimated data vector can be written as

d̂[n] = X[n]w[n]
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(see (9.43) and the equation preceding it). Thus

6[n] = d[n]−X[n]w[n] (11.60)

Then (11.57) can be written in matrix notation as

Sβ[n] = 6[n]∗TB[n]6[n] (11.61)

where B[n] is the diagonal matrix

B[n] =


βn−nI 0 · · · 0
0

. . .
... β 0
0 · · · 0 1

 (11.62)

Now by substituting (11.60) once on the left, (11.61) can be rewritten as

Sβ[n] = (d[n]−X[n]w[n])∗TB[n]6[n] = d[n]∗TB[n]6[n]−w∗TX∗T [n]B[n]6[n]
(11.63)

A necessary condition for minimizing Sβ[n] is thus given by

∇w∗Sβ[n] = −X∗T [n]B[n]6[n] = 0

(We can safely write this since 6[n] is a function of w, not w∗.) The condition

X∗T [n]B[n]6[n] = 0 (11.64)

is actually a statement of the Least Squares Orthogonality Principle using a
weighted form of inner product. (Compare (11.64) with the first equation in
Theorem 9.1, page 524.) Now substituting (11.60) into (11.64) yields

X∗T [n]B[n](d[n]−X[n]w[n]) = 0

and leads to the generalized least squares Wiener-Hopf equation

R[n]w[n] = r[n] (11.65)

where R[n] and r[n] are defined by

R[n] = X∗T [n]B[n]X[n] (11.66)
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and
r[n] = X∗T [n]B[n]d[n] (11.67)

These variables can be thought of as estimates of the correlation and cross-
correlation of the data, weighted so that older data has less influence.
The solution of (11.65) gives the required filter tap weight vector as

w[n] = R−1[n]r[n] (11.68)

The minimum weighted sum of squared errors corresponding to the solution
of (11.65) can be obtained by observing that when the orthogonality condi-
tion (11.64) is satisfied, the last term in (11.63) is actually zero. Thus the
weighted sum of squared errors corresponding to the optimal filter is given
by 8

Sβ[n] = d[n]∗TB[n]6[n] (11.69)

This corresponds to the second equation in Theorem 9.1. By once again
substituting (11.60) this can be written in the more explicit form

Sβ[n] = d[n]∗TB[n]d[n]− d[n]∗TB[n]X[n]w[n]
or, by taking note of (11.67) and (11.68),

Sβ[n] = d[n]∗TB[n]d[n]− r∗T [n]w[n]
= d[n]∗TB[n]d[n]− r∗T [n]R−1[n]r[n] (11.70)

11.5.2 Recursive Least Squares

Having developed a more general form of least squares filtering problem and
the generalized Wiener-Hopf equation (11.65), let us now consider finding a
recursive solution to this problem. The motivation for doing this is as follows.
The solution to (11.65) is for data in the interval [nI , n]. If the solution to
this problem can be updated as more data x[n+1], x[n+2] etc. is observed,
while at the same time older data is deemphasized due to the parameter β
in (11.57), then the filter becomes adaptive to the new data.
Our development of the basic RLS algorithm may seem a bit lengthy;

however, many important ideas are developed along the way that are useful

8To be precise, we should use separate notation for this minimum sum of errors cor-
responding to the optimal filter to distinguish it from the general expression (11.63) that
applies to any filter. The distinction however should be clear from the context.
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to the understanding of the algorithm and its extension, for example to fast
algorithms. The following discussion is therefore divided into subsections,
each of which develops one key idea. The results are then brought together
at the end to state the most common form of the algorithm.

Recursion for the filter coefficients.

A logical place to begin is to try to express the variables in the least squares
Wiener-Hopf equation (11.65) in a recursive form. First note by from (11.58)
that the data matrix X[n] can be written as

X[n] =

^
X[n− 1]
x̃T [n]

�
(11.71)

where x̃T [n] represents the last row of the matrix. In other words, x[n] is a
vector defined by

x[n] =


x[n− P + 1]
...
x[n− 1]
x[n]

 (11.72)

and x̃T [n] is its reversed transposed form. Also note from (11.59) and (11.62)
that d[n] and B[n] can be written recursively as

d[n] =

^
d[n− 1]
d[n]

�
(11.73)

and

B[n] =

^
βB[n− 1] 0
0 1

�
(11.74)

By applying these results to (11.66) and (11.67), the terms in the Wiener-
Hopf equation can be written recursively as

R[n] = X∗T [n]B[n]X[n]

=
�
X∗T [n− 1] x̃∗[n]

= ^ βB[n− 1] 0
0 1

� ^
X[n− 1]
x̃T [n]

�
= βR[n− 1] + x̃∗[n]x̃T [n] (11.75)
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and

r[n] = X∗T [n]B[n]d[n]

=
�
X∗T [n− 1] x̃∗[n]

= ^ βB[n− 1] 0
0 1

� ^
d[n− 1]
d[n]

�
= βr[n− 1] + x̃∗[n]d[n] (11.76)

Now, let us write w[n] as

w[n] = w[n− 1] +∆w (11.77)

and attempt to find a convenient form for ∆w. Substituting this expression
in (11.65) and expanding yields

R[n]w[n− 1] +R[n]∆w = r[n]

Further substitution of (11.75) and (11.76) for the first and last terms in this
equation leads tow

βR[n− 1]� ,� 1+x̃∗[n]x̃T [n]
W
w[n− 1] +R[n]∆w = βr[n− 1]� ,� 1+x̃∗[n]d[n]

Now notice, that using (11.65) once again, the terms with the underbraces
can be dropped out of the equation. Thus, by rearranging terms, the last
equation can be rewritten as

R[n]∆w = x̃∗[n] (d[n]− x̃T [n]w[n− 1])
= x̃∗[n] e[n] (11.78)

The new variable e[n] is known as the the a priori error or the prior error; it
has been defined implicitely above and can be written as

e[n] = d[n]−wT [n− 1]x̃[n] (11.79)

The prior error is the error resulting from applying the filter coeffiecients for
time n − 1 to the data at time n. It is not the same as the error 6[n] that
appears in the weighted sum (11.57). That error is given by

6[n] = d[n]−wT [n]x̃[n] (11.80)
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and is sometimes referred to as the a posteriori error or the posterior error.
Both e[n] and 6[n] are important for the RLS algorithm equations to be
developed.
Now, let us return to (11.77) and introduce a vector k[n] such that

∆w = k[n]e[n]

This form for ∆w seems reasonable, since you could expect that the change
in weight vector should be proportional to the error. With this formulation
the weight update equation (11.77) becomes

w[n] = w[n− 1] + k[n]e[n] (11.81)

and it follows from (11.78) that k[n] is the solution to

R[n]k[n] = x̃∗[n] (11.82)

It may seem that in deriving these last two equations, we have simply
traded one problem for another. In particular, by comparing (11.82) and
(11.65) it can be seen that k[n] is just the solution to the Wiener-Hopf
equation with r[n] replaced by x̃∗[n]. Equation 11.81 is a desirable form for
the adaptive filter however, because it shows how the error (the prior error in
this case) is used to update the filter coefficients. The term k[n] is called the
“gain” vector in analogy to a similar term appearing in the Kalman filtering
equations. Its significance as a solution to (11.82) is revealed later in the
chapter.

Relation between prior and posterior errors.

The prior and posterior errors can be related using (11.80), (11.81) and
(11.79) as follows:

6[n] = d[n]−wT [n]x̃[n]

= d[n]− (w[n− 1] + k[n]e[n])T x̃[n]
= (d[n]−wT [n− 1]x̃[n])− e[n]kT [n]x̃[n]
= e[n]− e[n]kT [n]x̃[n]

Then factoring out e[n] simplifies this equation to

6[n] = κ[n]e[n] (11.83)
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where
κ[n] = 1− kT [n]x̃[n] (11.84)

is called the conversion factor. This variable is further explored in Problem
11.12 where it is shown that κ[n] is real and satisfies

0 < κ[n] < 1 (11.85)

Note that by using the relation (11.83), the update equation (11.81) for
the filter weights can be written in the alternative form

w[n] = w[n− 1] + kI[n]6[n] (11.86)

involving the posterior error, where the new gain term kI[n] is related to k[n]
by

k[n] = κ[n]kI[n] (11.87)

You can also easily show that in analogy to (11.82), kI[n] is the solution to

βR[n− 1]kI[n] = x̃∗[n] (11.88)

and that an alternate expression for the conversion factor is

κ[n] =
1

1 + kIT [n]x̃[n]
(11.89)

(see Problem 11.12).

Recursion for the inverse correlation matrix.

In order to have a completely recursive algorithm, it is necessary to have a
recursive expression for the gain k[n] that appears in (11.81). Since k[n] is
the solution to (11.82), let us focus on finding a recursive expression for the
inverse correlation matrix R−1[n]. Fortunately such a result is available for
matrices of the form (11.75). This result is known to electrical engineers as
simply the “matrix inversion lemma.” Mathematicians however, refer to it
as the Sherman-Morrison-Woodbury formula, with the simplest statement of
the result given by Sherman and Morrison and the most general case due to
Woodbury. In the simplest (Sherman-Morrison) form the result states that

(A+ bc∗T )−1 = A−1 − A
−1bc∗TA−1

1 + c∗TA−1b
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whereA is a nonsingular matrix and b and c are conformable column vectors.
Applying this formula to (11.75) yields

R−1[n] = (βR[n− 1])−1 − (βR[n− 1])
−1x̃∗[n]x̃T [n](βR[n− 1])−1

1 + x̃T [n](βR[n− 1])−1x̃∗[n]
Now, examine this expression in light of previous results. Using (11.88) and
(11.89), the denominator of the fraction above can be identified as

1 + x̃T [n](βR[n− 1])−1x̃∗[n] = 1 + x̃T [n]kI[n] = 1/κ[n]

The numerator can be written as the productp
(βR[n− 1])−1x̃∗[n]

Q p
(βR[n− 1])−1x̃∗[n]

Q∗T
= kI[n]kI∗T [n]

(where we used the fact that R[n− 1] is Hermitian symmetric and β is real).
Putting the last three equations together, and using (11.87) then produces

R−1[n] = β−1R−1[n− 1]− k[n]kI∗T [n] (11.90)

which is the final desired result.

The complete RLS algorithm is obtained by combining (11.88), (11.89),
(11.87), (11.79), (11.81) and (11.90), in that order. The algorithm is sum-
marized in (11.91) below:

kI[n] = β−1R−1[n− 1]x̃∗[n] (a)

κ[n] = 1/(1 + kIT [n]x̃[n]) (b)

k[n] = κ[n]kI[n] (c)

e[n] = d[n]−wT [n− 1]x̃[n] (d)

w[n] = w[n− 1] + k[n]e[n] (e)

R−1[n] = β−1R−1[n− 1]− k[n](kI[n])∗T (f)

RLS (11.91)
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These are sometimes written in textbooks as a smaller set of equations,
but the expanded version shown here identifies all the significant variables
and moreover eliminates any tendancy to perform redundant computation.
Steps (a), (b), and (c) deal with the adaptive gain computation, step (d) is
the filtering and error computation, and step (e) is the weight update. Step
(f) computes the inverse correlation matrix in preparation for the next pass.
These equations can be put in direct correspondence with the Kalman filter
equations of Chapter 7.

The recursion can be initialized in one of two ways. First, you can start
by formulating and solving the Wiener-Hopf equations for a value n ≥ nI+P
to obtain the weight vector and inverse correlation matrix. Thereafter you
can apply the recursion to have an exact solution at each step. It is easier,
however, to begin with initial conditions

R−1[0] =
1

δ
I

w[0] = 0

where δ is a small positive constant. This quickly converges to the exact
solution as n gets large.

A final topic that needs to be addressed is the weighted sum of squared
errors, which can also be computed recursively. This is not as simple as it
seems, because in recomputing (11.57) for n instead of n− 1 there is a whole
new set of error terms involved.

To develop the recursive formula, start with the general expression (11.69)
and consider the form of the error vector 6 that appears in that equation.
Using (11.60), (11.81), and the partitionings (11.71) and (11.73), we can
write

6[n] = d[n]−X[n]w[n] = dn −X[n](w[n− 1] + k[n]e[n])
=

^
d[n− 1]−X[n− 1]w[n− 1]
d[n]− x̃T [n]w[n− 1]

�
−X[n]k[n]e[n]

=

^
6[n− 1]
e[n]

�
−X[n]k[n]e[n]

where (11.60) and (11.79) were used to write the last step. Substituting this
result into (11.69) and using the partitionings (11.73) and (11.74) produces
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Sβ[n] = d∗T [n]B[n]6[n]

=
�
d∗T [n− 1] d∗[n]

= ^ βB[n− 1] 0
0 1

� ^
6[n− 1]
e[n]

�
− d∗T [n]B[n]X[n]k[n]e[n]

= βSβ[n− 1] + d∗[n]e[n]− r∗T [n]k[n]e[n]

where (11.69) and (11.67) were used to simplify in the last step. Now, the
product r∗T [n]k[n] appearing in the last line can be rewritten using (11.65)
and (11.82) as

r∗T [n]k[n] = (R[n]w[n])∗Tk[n] = w∗T [n]R[n]k[n] = w∗T [n]x̃∗[n]

Thus the previous equation becomes

Sβ[n] = βSβ[n− 1] + (d∗[n]−w∗T [n]x̃∗[n]) e[n]

or, in view of (11.80),

Sβ[n] = βSβ[n− 1] + 6∗[n]e[n] (11.92)

which is the desired result. By using the conversion relation (11.83) this last
equation can be written in two other alternate forms:

Sβ[n] = βSβ[n− 1] + κ[n]|e[n]|2 (a)

Sβ[n] = βSβ[n− 1] + |6[n]|2/κ[n] (b)
(11.93)

The main loop for a MATAB implementation of the RLS algorithm is
shown below:
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MAIN LOOP OF FUNCTION
(RLS algorithm):

for n=P:length(x) % loop through all data

xn=x(n:-1:n-P+1);

g=Rm1*xn’;

gamma=1/(beta + xn*g);

k=gamma*g;

epr(n) = d(n) - xn*W(:,n-1);

W(:,n) = W(:,n-1) + k*epr(n);

Rm1 = (Rm1 - k*g’)/beta;

epo(n) = beta*gamma*epr(n);

S(n) = beta*S(n-1) + epo(n)*conj(epr(n));

end

The data vector ‘x’ appearing in the second line is assumed to be a row vector,
hence ‘xn’ is also a row vector. Note that in this implementation equations
(11.91) have been modified slightly to achieve more efficient computation (see
Problem 11.14). In particular, two new variables have been defined as

g[n] = βkI[n] γ[n] = κ[n]/β (11.94)

and the computations are carried out using these terms. The variable ‘W’ is
a matrix whose columns represent the filter coefficent vector as a function of
time, and ‘epr’ and ‘epo’ represent the prior and posterior errors respectively.

11.5.3 RLS Performance

Example 11.2 The RLS method is applied to the system identification problem
considered in Example 11.1. Recall that when the input process is highly cor-
related convergence is very slow (see Fig. 11.8 (d)). Figure 11.12 compares the
performance of LMS and RLS during the first 30 iterations. From this limited
observation time it appears that the values of the filter coefficients produced by
the LMS algorithm are leveling off but are nowhere near the true values. (Actually
we know from the previous example that the filter coefficients have not leveled off
and do approach the true values, but only after more than 500 iterations.) The
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RLS algorithm however converges to the correct values after just three iterations
and remains stable. This remarkably better performance is obtained, of course,
with a significant increase in the number of computations per iteration.

2
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Figure 11.12: System identification example. (a) LMS method a = 0.95,χ =
39, µ = 0.01. (b) RLS method with same input sequence.
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Problems for Chapter 11

11.1 Suppose the input x[n] to a second order adaptive filter is a first 11-B
order random process with parameters a and σ2w as specified in
Example 11.1.

(a) Show that the eigenvalues of the input correlation matrix are
given by

λ1 =
σ2w

1− |a| and λ2 =
σ2w

1 + |a|
and therefore that the eigenvalue spread is given by

χ =
λ1
λ2
=
1 + |a|
1− |a|

Use this result to check the values in the table in Example
11.1.

(b) Derive an expression for the misadjustmentM in terms of a
and σ2w.

11.2 (Problem on convergence of mean using independence theory.) 11-G

11.3 (Problem on mean-square convergence using independence theory
and derivation of expression forM.) 11-H

11.4 You are given the following data sequencees: 11-M

x[n] = { 1, −2, 3, −4, 5 }
d[n] = { 1, −1, 1, −1, 1 }

It is desired to find a filter to estimate d[n] from x[n]. The filter
is to be of the form:

d̂[n] = w0x[n] + w1x[n− 1]

(a) Find the weights, wi, for the optimal (Wiener) filter assuming
no pre-windowing or post-windowing of the data. Apply the
filter to the data and generate the error sequence e[n] =
d[n]− d̂[n].
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(b) What is the “correlation matrix” used in the solution of this
least squares problem? Be sure to use the appropriate nor-
malization.

(c) What is the theoretical upper bound on the step size param-
eter µ that would allow an LMS algorithm applied to this
problem to converge?

(d) What is the condition number of the correlation matrix?
Would you expect the LMS algorithm for this problem to
converge relatively slowly or relatively rapidly?

11.5 Apply the LMS algorithm to compute the filter weight vector
w = [w0 w1]

T in Prob. 11.4. Assume there is no prewindowing11-N
of the data and take µ = 0.05. Start with w[0] = 0 and carry
out the algorithm numerically for three steps, i.e., up to w[3] and
e[3].

11.6 Show that the leaky LMS algorithm can be derived by minimiza-11-C
tion of the quantity

|ε[n]|2 + α,w[n],2

11.7 Show that the optimum value of δ for the Normalized LMS algo-11-D
rithm is given by

δ[n+ 1] =
ε[n]x̃∗[n]

,x̃[n],2

11.8 By taking the expected value of (11.45) and using the formula for
the sum of a geometric series, derive a closed-form expression for
E
+
P̂T [n]

�
. Use this to show that the limit PT = limn→∞ E

+
P̂T [n]

�
11-L

exists and is given by PT = PRx[0]. Therefore P̂T [n] is an asymp-
totically unbiased estimate of the mean tap input power.

11.9 Show that the sign-error algorithm given by (11.46) can be de-11-E
rived by minimizing the absolute value of the instantaneous error
|ε[n]|.

11.10 Show that the minimum value of the error criterion defined by11-F
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(11.48) satisfies the order recursion

(Jp)min = (Jp−1)min − 2γpE
+
εb∗p−1[n− 1]εp−1[n]

�
= (Jp−1)min − 2|γp|2σ2p−1

11.11 Apply the RLS algorithm to the data in Prob. 11.4 with β = 1.
Assume no prewindowing and use the initial conditions 11-P

R−1[0] = 1000 I

w[0] = 0

Carry out the computations up to n = 3 and compute w[n] and
the posterior error. Compare the error sequence to that for the
LMS method in Prob. 11.5 above.

11.12 By using the relation (11.82), the recursion (11.75) for the cor-
relation matrix, and the definition (11.84) 11-I

(a) Show that the gain kI[n] satisfies (11.88).

(b) Also show that an alternate expression for the conversion
factor κ[n] is (11.89).

(c) Starting with the results in (a) and (b), show that κ[n] is
real-valued and satisfies (11.85).

11.13 Show that the inverse correlation matrix R−1[n] in the RLS 11-J
method satisfies the recursion

R−1[n] = β−1K[n]R−1[n− 1]
where K[n] is the matrix

K[n] = I− k[n]x̃T [n]

11.14 (a) Carefully compute and compare the total number of arith-
metic operations per iteration necessary for implementing
the LMS algorithm (11.31) and the RLS algorithm (11.91). 11-K
Count the additions and the multiplications separately, con-
sidering subtraction as addition and division as multiplica-
tion. Your results should be expressed as polynomials in P ,
the order of the filter.
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(b) Show that by rewriting (11.91) in terms of the variables g[n]
and γ[n] defined by (11.94) as is done in the MATLAB code,
you can save P multiplications per iteration.
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Computer Assignments for Chapter 11

11.1 An “unknown” linear system is described by the difference equa-
tion

y[n] = x[n]− 0.7x[n− 1]
where x is the input and y is the output. It is desired to estimate
the parameters of this system by using an adaptive filter in the
system identification configuration. The adaptive filter is taken
to be a first order FIR filter with unknown weights w0 and w1.

Four different signals will be used for the input sequence. These
are the data sets S00, S01, S02, and S03. These data sets have
been generated using a model of the form

x[n] = ax[n− 1] + v[n]
where v is a unit variance white noise sequence and a is equal to
0, 0.95, 0.7 and −0.95 respectively.

(a) Using the results of Problem 11.1, generate a table similar to
that in Example 11.1 for these four input data sequences.

(b) Write a MATLAB function to implement the LMS method,
and plot the trajectories of the filter coefficients and the
squared error (learning curve) of the adaptive filter for each
of the four input sequences. For each input choose µ to be
1/10 of the theoretical upper bound.

(c) For each of the input data sets, estimate Rx[0] and compute
the upper bound given by equation 11.32. Repeat the sim-
ulations of part (b) choosing µ to be 1/10 of these upper
bounds.

(d) Determine by experimentation the largest value of µ for each
sequence that will not cause the process to become unstable.
Provide a table comparing these values to the upper bounds
in parts (a) and (c).

(e) Choose one of the variations of the LMS method discussed in
Section 11.3.3 and conduct a set of simulations using the four
input sequences and an appropriate value of the step size
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parameter. Compare the results you obtain to the results
for the basic LMS method.

11.2 Refer to Computer Assignment 11.1 and apply the RLS method
to this system identification problem using each of the input data
sets S00, S01, S02, and S03. Using the function ‘rls.m’ provided
to you, plot and compare the weight trajectories and the squared
error sequences to those obtained from the LMS algorithm you
wrote in the Computer Assignment 11.1. Plot results for RLS and
LMS on the same graph for ease of comparison. For each case, es-
timate and compare the number of additions and multiplications
required for convergence.


